摘要

为了避免机械臂自主抓取方法中普遍存在的运动学求逆耗时和视觉系统标定计算复杂度高的问题,提出一种基于高斯过程回归(GPR)和核岭回归(KRR)组合模型的机械臂抓取方法。在学习阶段,训练基于Mask-RCNN的目标检测和实例分割算法及GPR和KRR的机械臂抓取策略;在抓取阶段,首先使用目标检测和实例分割算法获取目标物体的位姿,然后根据目标物体位姿和机械臂关节角的映射关系,结合GPR和KRR的组合模型预测出机械臂关节角并控制机械臂完成抓取任务。实验结果表明:所提出的方法无需视觉系统的标定和机械臂运动学求逆,能够准确地获取目标物体的位姿,AUBO i5机械臂验证,本方法能够实现对目标物体较为准确的抓取。