基于深度学习的机械臂抓取姿态估计实验设计

作者:辛菁; 龚爱玲; 赵永红; 穆凌霞; 弋英民; 张晓晖
来源:实验室研究与探索, 2023, 42(02): 1-30.
DOI:10.19927/j.cnki.syyt.2023.02.001

摘要

为高效准确估计出机械臂对未知物体抓取姿态,提出了一种基于深度学习的机械臂抓取姿态估计方法,并设计了相关实验。该方法将生成抓取卷积网络GGCNN与挤压激励(SE)网络模块相结合,提出基于注意力机制的生成抓取卷积网络SE-GGCNN模型,提高抓取姿态估计的准确率。在Cornell数据集和JACQUARD数据集上进行了比较性实验。结果表明,相比于基本的GGCNN模型,SE-GGCNN模型在保证实时性的同时,将IoU指标值由原先的76%提升至82%;对于数据集中未出现过的新对象具备很好的鲁棒性和自适应性;单张图片115 ms的检测用时表明所提出的方法适合实时应用,提升了未知物体抓取姿态估计的准确率。