摘要
要:基于深度学习的显著目标检测方法已被用于带钢表面缺陷检测中,但仍存在模型收敛速度慢、检测结果边缘不清晰等问题。针对现有问题,本文提出了基于边缘感知深度残差网络(boundary-aware deeply residual network, BADRNet),以此进行带钢表面缺陷的显著目标检测。将边缘信息引入至缺陷检测任务中,解决了因目标尺寸多样性带来的检测结果边缘不清晰的问题;通过在边缘提取、显著特征融合部分采用具有残差结构的3个卷积层作为基本块,提高了训练效率且保持原有的检测精度不变。在公开的SD-saliency-900数据集上的实验结果表明,所提模型相比于现有模型,在6个评价指标上均取得了最优效果。BADRNet比当前最优的EDRNet在S-measure指标上提升了1.6%,同时对于缺陷区域边缘的检测效果具有明显提升。
-
单位自动化学院; 杭州电子科技大学