摘要

用户信用卡违约预测任务有助于银行等金融机构平衡经济风险与经济利益,对于银行信用卡业务的风险管控具有重要作用。针对用户信用卡违约预测问题,提出了一种基于集成学习的预测模型,有异于传统集成学习中的弱学习器。该模型采用集成模型和神经网络模型作为基学习器,从而提升模型整体的预测效果。首先通过预处理提取用户信用卡数据集的相关特征,然后分别采用优化后的决策树、随机森林、GBDT、XGBoost、CatBoost和SPE六种机器学习模型与神经网络模型进行并行训练和预测,最后通过加权软投票法集成基学习器结果并输出最终预测结果。结果表明,相对于基学习器,该模型在各项评估指标上均有所提升,且拥有更好的模型泛化能力。