摘要
针对传统自编码器以无监督方式学习特征、缺乏监督信息的指导造成特征判别性弱的问题,提出一种簇紧凑自编码器(cluster compact auto-encoder, CCAE).首先,利用模糊C均值算法对样本进行聚类得到伪标签,并通过PBMF指标确定最佳聚类数;然后,利用伪标签构建簇紧凑正则项,嵌入样本所属类别的判别性信息;最后,将簇紧凑正则项与标准自编码器的损失函数相结合作为CCAE的损失函数,所提出的CCAE通过伪标签的方式嵌入区分类别的判别性信息,可增强特征的判别性,从而显著提升诊断性能;最后,在旋转机械齿轮和轴承数据集上验证所提出方法的有效性,结果表明, CCAE可广泛用于旋转机械故障诊断的特征提取阶段,为工程人员实现判别性特征的自动提取提供一种解决方案.
- 单位