从时频联合域分析角度出发,探讨基于局域均值分解(LMD)和BP神经网络模型的大坝变形预测方法;利用局域均值分解把时间序列分解为多个具有不同尺度的PF分量,然后再用BP神经网络对其进行预测并将结果进行叠加重构合成。实例结果表明,基于LMD-BP的大坝变形预测方法的预测精度高于多项式曲线拟合预测模型,其预测结果与实际监测值相比具有较高的一致性。