发酵过程中基质浓度往往无法在线测量,采用高斯过程回归(GPR)建立基质浓度的估计模型,实现了其软测量。不同于传统软测量方法对基质浓度的估计,该方法不仅可以得到估计值,还能够得到其估计方差。考虑到发酵过程中各变量之间的非线性、相关性,为了提高模型的预测性能,在模型建立之前首先用k-近邻互信息(k-MI)辅助变量选择方法对模型的输入变量进行选择。从青霉素发酵过程的应用结果来看,采用kMI-GPR方法取得了较好的估计效果。