摘要
电阻率测量是海底沉积物工程地质勘察的主要原位观测方法之一,作为一种间接测量方法,需要建立沉积物物性参数与沉积物电阻率的回归模型。为提高建模精度,本文提出了一种基于鲸鱼算法优化的最小二乘支持向量机(Whale Optimization Algorithm-Least Squares Support Vector Machine,WOA-LSSVM)的海底沉积物物性参数与电阻率回归建模方法。该方法建立了海底沉积物电阻率与沉积物4种基本物性参数(含水率、密度、孔隙比、塑性指数)的单输入、单输出最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)回归模型,利用WOA算法对LSSVM参数进行寻优取值。对比研究了WOA算法、遗传算法(Genetic Algorithm,GA)、粒子群(Particle Swarm Optimization,PSO)算法优化的LSSVM建模结果,结果表明,基于WOA-LSSVM建立的海底沉积物物性参数与电阻率的回归模型具有更好的预测效果,均方根误差降低1.1%~14.9%,平均绝对百分比误差降低0.4%~19.9%。
- 单位