摘要

为改善传统循环神经网络预测梯度消失的问题,准确预测水位变化,采用门控循环单元(gated recurrent unit, GRU)和支持向量回归(support vector regression, SVR)构建组合预测模型,对广州市猎德涌的源头西湖水位进行预测。选择了3种不同核函数下的GRU-SVR(多项式核、RBF核、Sigmoid核)模型,并确定了最佳核函数组合,探索了GRU组合模型在水文时序预测中的有效性。该组合模型通过GRU提取雨量与水位间时空特征,SVR增强整体的非线性预测能力。结果表明,GRU-SVR(多项式核)适用于湖泊降雨时期预测,与CNN-GRU及GRU、SVR相比,该模型整体预测精度分别提升了3.2%、10.3%和59.3%。

全文