摘要

铝碳耐火材料是连铸高温功能部件的常用材料之一,但随着钢铁连铸技术的不断发展,传统材料已不能满足要求。因此研究者常通过对原料的设计和工艺参数的优化使耐火材料在一定温度下具有特定的碳质原料自身结构、衍生碳结构和原位生成陶瓷相结构,即通过微结构调控的方法使材料具备良好的力学性能和抗热震性能,从而使铝碳功能部件适应连铸技术的发展需要。铝碳耐火材料的碳质原料结构按照特征可分为宏观片状、蠕虫状、纳米球状、管状等众多类型。研究表明,虽然具体机制不同,但这些特殊结构的存在通常对材料抗热震性能的提升有一定积极作用。衍生碳结构根据产生途径可分为残留的碳原子聚集体和气相沉积而成的新碳结构。对于酚醛树脂产生的碳原子聚集体,其本身难以石墨化,因此研究主要集中在催化石墨化方向。对于气相沉积碳,因为其生成常需要催化剂,所以研究主要集中在催化剂的催化机理及其对沉积碳结构的调控方向。而研究亦发现石墨化碳和气相沉积碳的存在往往有利于材料力学性能和抗热震性能的提升。原位生成陶瓷相结构依据控制因素可分为遗传控制和条件控制两类。前者结构与反应物原结构类似,受限制较大。而后者结构受工艺条件的影响更显著,更满足微结构调控的需要。一般认为,各原位陶瓷相的存在均与力学性能的提升联系紧密。而材料的力学性能及抗热震性能除了受到微结构形态特性影响外,还受到结构的物相特性及其分布等因素的影响。因此,必须采用合适的原料和工艺手段对特定微结构的形态、物相和分布进行整体调控以确保材料性能的提升。本文归纳了连铸用铝碳耐火材料中微结构调控的研究进展,分别对碳质原料自身结构、衍生碳结构、原位生成陶瓷相结构以及影响材料力学等性能的其他因素等进行了介绍,分析了目前研究的不足并展望了未来的研究方向,以期为高性能连铸用铝碳耐火材料的设计提供参考。

全文