摘要

云层覆盖是影响对地观测卫星成像的一个重要问题,因为如果遥感图像中云层比例太高,或者特定目标不可见,则遥感图像就会失效。对地观测卫星能够根据云层预测信息,在多个观测目标之间进行选择。面向对地观测卫星任务规划的应用,本文设计了大区域范围的短期云层预测方法,首先通过光流法获取云运动矢量,然后依据云运动矢量外推获得预测的云层图像,同时引入拉普拉斯算子刻画云层运动过程中的扩散现象,利用风云二号卫星的真实云图序列数据,通过神经网络的反向传播算法优化扩散因子,以提升云层预测的效果。通过对结果进行分析,引入的拉普拉斯算子方法能够提高云层预测的精度,80%分位数的云层覆盖率误差约为11.7%,该精度的云层预测可以用于指导对地观测卫星任务规划。