摘要
小目标检测在计算机视觉领域具有重要意义,但现有方法在应对小目标的尺度变化、目标密集和无规则排列等挑战时经常出现漏检和误检的问题。为解决这些问题,提出基于改进YOLOv5算法的ATO-YOLO。首先,为提升检测模型的特征表达能力,提出一种结合注意力机制的自适应特征提取模块(Adaptive Feature Extraction, AFE),通过动态调整权重分配突出关键目标的特征表示,提高目标检测任务在不同场景下的准确性和鲁棒性。其次,设计一种三重特征融合机制(Triple Feature Fusion , TFF),能够在不同尺度下充分利用多尺度信息,将多个尺度的特征图融合,以获取更全面的目标特征,提升对小目标的检测效果。最后,引入一种输出重构模块(Output Reconstruction, ORS),通过去除大目标检测层并增加小目标检测层,实现精确定位和识别小目标,并且相对于原模型复杂度更低,检测速度更快。实验结果表明,ATO-YOLO算法在VisDrone数据集上的mAP@0.5达到了38.2%,较原YOLOv5提升了6.1%,且FPS较改进前提升了4.4%,能够快速准确地对小目标进行检测。
- 单位