摘要

解析解可以作为经验公式以及数值方法对比的基准、快速参数分析和优化的工具以及实验设计的理论依据,具有独特的研究价值,而传统解析方法(如Lévy解法)只能求解对边简支板壳的力学问题,对于复杂边界约束下的板壳力学问题难以获得解析解.笔者等近年来发展了板壳力学问题的有限积分变换法,实现了非Lévy型板壳力学问题的求解,但仍无法直接求解由混合边界约束引起的板壳高阶偏微分方程复杂边值问题.该文首次结合有限积分变换与子域分解方法,实现了混合边界约束下矩形薄板自由振动问题的解析求解.首先根据混合边界约束将矩形板拆分为两部分,然后通过有限积分变换法对两部分分别进行求解,最后引入连续性条件,获得了原问题的解析解.以工程中常见的边缘点焊悬臂板为背景,具体分析了一边固支-简支混合约束、其余三边自由的矩形薄板自由振动问题,获得的固有频率和振型结果均与有限元数值解及文献结果高度吻合,验证了该文推导和结果的准确性.有限积分变换法的求解从基本控制方程出发,无需预先假设解的形式,因此是一种严格的分析方法,可以广泛求解以板壳力学问题为代表的高阶偏微分方程复杂边值问题.