摘要
基于灰度共生矩阵(GLCM)的纹理特征在影像空间分析中具有重要作用,提出了一种在领域空间知识辅助下构建GLCM多尺度窗口与主方向权值的方法,从而提高纹理特征的有效性,并解决影像土地利用分类中存在的不确定性问题。为此,根据人类目视解译的特点,对GIS与RS数据进行集成计算:首先,在图像配准的基础上,利用经典的GIS空间数据挖掘算法,渐近式地提取领域形态知识;接着,采用关联分析法建立其与GLCM构造因子之间的响应机制,并设计了基于地类形状指数的多尺度窗口建立算法,以及基于地类主方向分布指数的方向权值测度算法。试验结果表明,领域形态知识与GLCM空间因子之间具有强相关关系,该方法提取出的纹理特征可以描述复杂地物的空间意义,算法复杂度低,性能优越,有效提高了影像土地利用分类的精度。
- 单位