摘要

乙烯是石油化工的重要产品,蒸汽裂解生产乙烯的工艺十分复杂。构建精确的石脑油裂解模型,可以实现石脑油裂解制乙烯过程的裂解深度快速、准确预测。该文比较了支持向量回归、k-近邻回归和极限梯度提升3种机器学习模型。通过具有噪声的基于密度的聚类算法(DBSCAN)和局部异常因子检测算法,对工业数据集进行重要变量和样本筛选,训练3个子模型,并构建集成模型以提高预测效果。集成模型结合各子模型的优势,减轻过拟合、对噪声敏感等不足,加强稳定性与泛化能力。实测集成模型的预测值R2为0.955,平均绝对百分比误差约为0.23%,满足过程研究和工业应用的实际需求。

全文