摘要

针对混凝土坝变形分析预测的复杂性,应用相空间重构思想和融合建模理念,提出了一种基于SSA-LSTM-GF的混凝土坝变形分析预测方法。SSA-LSTM-GF方法利用奇异谱分析法(SSA)将变形实测数据序列分解为趋势分量、周期分量和剩余分量,并将剩余分量视为噪声分量予以剔除;采用长短期记忆神经网络(LSTM)模型和高斯拟合(GF)算法分别进行周期分量和趋势分量的分析预测,并将二者结果进行叠加重构,得到最终预测结果。实例验证结果表明,SSA可以达到较好的数据分解和消噪效果,LSTM模型针对周期分量的预测性能优越,GF算法能够很好地实现趋势分量的拟合预测和部分信息的挖掘提取,LSTM模型和GF算法的成果重构效果良好,SSA-LSTM-GF方法具有一定的可行性和应用价值。