摘要

针对城市路网交通流数据的空间相关性、非线性和平稳与非平稳的特点,提出一种采用基于交通流量数据相关性分析改进的路网聚类算法与基于交通流量分段加权适应度函数的粒子群小波神经网络算法(MC-MPSOWNN)相结合的预测方法,来提高算法的预测精度.首先,利用基于交通流量数据相关性分析的路网聚类算法筛选出空间中与预测点交通流量数据相关系数高的其他观测点,以此精简了样本输入数据,减少冗余数据对预测精度的干扰,提高整体预测精度;其次,再构建一种新型的粒子群算法的适应度函数,给予整体预测样本中非平稳数据段更大的调节力度,以此来进一步提高非平稳数据段的预测精度.最后经实验结果分析,提出的改进预测算法相比未进行改进前预测算法而言,明显提高了整体及非平稳数据段预测精度,达到较好的预测效果.