摘要

针对Camassa-Holm方程的初边值问题建立了一种非线性的两层Crank-Nicolson守恒差分格式,验证了该差分格式解的存在性以及能量守恒性,对差分解进行了模估计,并用离散能量方法证明了该差分格式解的收敛性和稳定性,最后用数值实验验证了差分解的精确性。

全文