摘要

针对传统合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标检测算法检测精度易受斑点噪声影响,且只能提取底层特征及其泛化性较差的问题,提出了一种基于深度卷积神经网络的SAR图像舰船目标检测算法。首先将目前先进的单次多盒检测器(single shot multibox detector,SSD)检测算法应用到SAR图像舰船目标检测领域,指出了其在该领域存在的局限性,在此基础上提出了基于SSD的新的检测方法,包括融合上下文信息,迁移模型学习,在公开的SSDD数据集上进行了训练和测试,对实验结果进行了对比分析,实验结果表明,相比于原始的SSD检测算法,所提出的方法不仅提高了目标检测精度,同时也保证了算法的检测效率。