摘要

针对现有的手势识别方法存在数据集过少、利用特征信息较少和神经网络部分提取信息不充分的问题,提出一种基于毫米波雷达传感器RAI图像的手势识别方法。首先使用TI公司的IWR1443毫米波雷达传感器采集10类手势数据构建数据集,再通过对手部反射的雷达信号进行时频分析,获取固定帧数的RDI和RAI。为了充分提取手势特征并精确分类,在卷积神经网络基础上,引入了残差块和通道注意力块。实验结果表明,相较其他特征如RDI,RAI能更准确的表征手势,所提出的网络相比于CNN方法准确率提高了12.72%,相比于VGG16-Net和单参数VGG16-Net方法准确率提高了8.93%与10.41%,参数量降低了90.68%,时间复杂度降低了17.2%。

全文