摘要
为了避免传统全息重建方法步骤繁杂且重建效果易受噪声干扰等问题,采用一种改进的语义分割U型网络用于全息图超分辨重建工作。首先引入新型的端侧神经网络,用来充分获取更多的图像语义信息,增强网络学习性能;其次加入深度神经卷积网络的高效通道注意力以提高网络关注全息图中细节信息的能力,进一步提升网络精度,同时采用带泄露修正线性单元作为激活函数,加快网络收敛;并采用血细胞和鸡血细胞的低分辨率全息图进行训练,取得了超分辨重建强度和位相图。结果表明,改进网络能够快速重建出细节信息丰富、边缘纹理清晰、背景平坦的位相和强度图像,血细胞强度重建图的结构相似性指数和峰值信噪比分别达到0.9613和27.38,同时可对不同尺度的全息图进行重建。该研究为使用深度学习方法提高全息图质量提供了参考。
- 单位