摘要
针对智能电网调度控制系统(D5000系统)健康度评价,基于专家经验的传统评价方法存在主观性较大的问题,机器学习多分类方法是提高评价客观性的一种有效手段,但健康度各等级样本数目间存在的不平衡问题导致分类准确率较低,为此提出一种基于随机平衡和极端梯度提升(RB-XGBoost)算法的D5000系统健康度评价模型。首先,针对系统各评价等级样本数目严重不平衡的问题,提出一种自适应随机平衡(RB)的混合采样方法,分别以等级间样本数目的最大值、最小值作为采样区间的上、下限,生成多个随机数对各等级样本数据进行欠采样或过采样,增加训练数据的多样性并降低其不平衡程度;然后,训练平衡后的样本数据,建立极端梯度提升(XGBoost)算法子模型,考虑到各子模型重要度的一致性,提出采用硬投票方式集成所有子模型,得到与D5000系统各子模块对应的评价模型;最后,根据该系统指标层级关系,在评价过程中采用并、串行结合的计算方式,构建包含17个RB-XGBoost模型的D5000系统整体健康度评价模型。8组KEEL数据库中多类不平衡数据集的实验结果表明,与现有同类典型方法相比,所提方法的平均分类准确率最高提升了6.79%,平均提升了2.03%;某网省级D5000系统的实时采集数据验证了所提方法的有效性。
-
单位北京邮电大学; 国网电力科学研究院; 自动化学院