摘要
在大数据时代,随着数据采集手段的不断提升,大规模复合凸优化问题大量的出现在包括统计数据分析,机器与统计学习以及信号与图像处理等应用中.本文针对大规模复合凸优化问题介绍了一类快速邻近点算法.在易计算的近似准则和较弱的平稳性条件下,本文给出了该算法的全局收敛与局部渐近超线性收敛结果.同时,我们设计了基于对偶原理的半光滑牛顿法来高效稳定求解邻近点算法所涉及的重要子问题.最后,本文还讨论了如何通过深入挖掘并利用复合凸优化问题中由非光滑正则函数所诱导的非光滑二阶信息来极大减少半光滑牛顿算法中求解牛顿线性系统所需的工作量,从而进一步加速邻近点算法.
- 单位