摘要

为解决自动驾驶汽车在高速公路安全换道问题,提出了一种基于深度强化学习算法的换道跟踪控制模型,并进行了仿真实验。采用五次多项式方法,建立车辆换道路径模型,并给出跟踪误差函数;将车辆三自由度动力学模型与深度强化学习框架相融合,搭建换道路径跟踪控制模型;通过深度确定性策略梯度(DDPG)算法来更新该模型;学习得到换道路径跟踪的最佳转向角,来控制车辆完成换道过程。结果表明:在100 km/h车速条件下,本方法控制的横向位置误差绝对值的最大值接近0,角偏差绝对值最大值为10 mrad;所提出的方法相比传统的模型预测控制方法而言,轨迹跟踪的横向位置误差和角误差更小。因而,该模型能够实现高速环境下的自主换道过程,这对保证交通安全和缓解交通有意义。