摘要
传统异常用电行为识别方法浪费大量人力与物力,且准确率较低、效果不佳,本文在大数据背景下,提出一种基于相似性搜索的商业园区异常用电行为自动识别方法。通过分析相似性搜索方法获得用户用电时间序列,采用趋势性指标、变化性指标、波动性指标以及其他指标分析商业园区异常用电行为,引用主分量分析与因子分析方法提取异常用电行为特征,凭借误差矩阵自动规整化数据,设定欧氏距离阈值实现商业园区异常用电行为自动识别。实验结果表明方法可降低计算难度,高效识别出异常用电数据,保证商业园区正常用电。
-
单位南瑞集团公司(国网电力科学研究院)