摘要

针对机器学习模型对音乐流派特征识别能力较弱的问题,提出了一种基于深度卷积神经网络的音乐流派识别(DCNN-MGR)模型。该模型首先通过快速傅里叶变换提取音频信息,生成可以输入DCNN的频谱并切割生成频谱切片。然后通过融合带泄露整流(Leaky ReLU)函数、双曲正切(Tanh)函数和Softplus分类器对AlexNet进行增强。其次将生成的频谱切片输入增强的AlexNet进行多批次的训练与验证,提取并学习音乐特征,得到可以有效分辨音乐特征的网络模型。最后使用输出模型进行音乐流派识别测试。实验结果表明,增强的AlexNet在音乐特征识别准确率和网络收敛效果上明显优于AlexNet及其他常用的DCNN、DCNN-MGR模型在音乐流派识别准确率上比其他机器学习模型提升了4%~20%。