摘要
表层采样是月球采样探测的重要方式,样品智能确认有助于提升工作效率与复杂问题处理能力。结合月球表层采样铲挖工作过程,分析了铲挖过程中臂载相机图像的特点,模仿有人参与识别过程,提出了层次解耦的月球样品智能识别流程,利用深度学习方法构建了一类深度卷积识别网络,完整地描述了图像、特征、标记在网络中的正反传递关系,并在月球表层采样地面试验中进行了验证,结果表明该方法对不同光照、不同背景、不同过程、不同形态的样品,具有较好的泛化识别能力,误识别率优于8.1%,平均单幅识别时间约0.7 s。
- 单位
表层采样是月球采样探测的重要方式,样品智能确认有助于提升工作效率与复杂问题处理能力。结合月球表层采样铲挖工作过程,分析了铲挖过程中臂载相机图像的特点,模仿有人参与识别过程,提出了层次解耦的月球样品智能识别流程,利用深度学习方法构建了一类深度卷积识别网络,完整地描述了图像、特征、标记在网络中的正反传递关系,并在月球表层采样地面试验中进行了验证,结果表明该方法对不同光照、不同背景、不同过程、不同形态的样品,具有较好的泛化识别能力,误识别率优于8.1%,平均单幅识别时间约0.7 s。