摘要
现有最大Shannon熵或Tsallis熵阈值选取方法没有从类内灰度均匀性出发,而仅依据图像灰度直方图,并且Tsallis熵法的分割效果通常优于Shannon熵法。为此,提出了基于混沌粒子群优化(PSO)和基于分解的两种2维Tsallis灰度熵阈值分割方法。首先,给出了1维Tsallis灰度熵阈值选取方法并将其推广到2维,导出了相应的2维Tsallis灰度熵阈值选取公式及其递推算法;其次,利用混沌PSO算法搜寻2维Tsallis灰度熵法的最佳阈值,并采用递推方式去除迭代过程中适应度函数的冗余运算,大大提高了运行速度;最后,将2维Tsallis灰度熵阈值选取方法的运算转化为两个1维Tsallis...
- 单位