针对区域建议网络中锚点框引入背景噪声导致小目标检测精度低的问题,提出了基于语义分割的感兴趣区域生成方法.首先把感兴趣区域的搜索问题转化为前景和背景的二值语义分割问题;然后对语义分割所得的前景进行中值滤波及连通域分析,直接得到感兴趣区域的大小和位置,从而避免使用锚点框来生成感兴趣区域,减小了背景噪声对目标检测的影响.对自然场景下高原鼠兔目标进行检测,结果表明:基于语义分割的感兴趣区域生成方法最优F1值比区域建议网络高27.75%,检测精度更高.