摘要
针对鲸鱼优化算法(WOA)存在的收敛速度慢、收敛精度低和易陷入局部最优等问题,提出了采用非线性收敛因子、协同a的惯性权重、时变独立搜索概率和免疫记忆改进的鲸鱼优化算法(IWTWOA);应用非线性收敛因子、协同a的惯性权重和时变独立搜索概率改进WOA迭代模型,平衡了算法的全局搜索和局部搜索能力,有效避免了陷入局部最优的问题;引入免疫算法的免疫记忆机制,提高了算法收敛速度;选取了15个基准测试函数进行性能测试,结果表明IWTWOA算法在稳定性、计算精度和收敛速度上均有所提高;最终将其应用在路径规划问题中,获得了较好的结果。
- 单位