摘要

作为机械传动系统中的重要部件,齿轮经常运行在变转速变载荷工况下,直接采集到的齿轮故障信号(原始信号)往往存在强背景噪声。由于其原始信号中存在噪声信号,干扰了齿轮故障模式识别,且传统故障识别方法准确率较低,针对这一问题,提出了一种基于CSAEMD-KECA和角结构距离的齿轮故障识别方法。首先,使用互补正弦辅助经验模式分解(CSAEMD)方法对齿轮故障信号进行了分解重构,以去除信号中的噪声成分;然后,利用核熵成分分析(KECA)方法对CSAEMD分解重构后的信号进行了特征提取,选取了对样本(CSAEMD分解重构后的信号)瑞丽熵贡献值较大的3个特征向量,并将其作为投影向量,样本数据向投影向量投影形成了特征数据集;最后,搭建了故障模拟实验台,对上述方法的可行性进行了验证,采用角结构距离的聚类方法对特征数据集进行了聚类分析。研究结果表明:利用实验台数据进行的有效实验,能够准确地识别出齿轮的各种故障,其聚类准确率达到98.3%;该结果可验证基于CSAEMD-KECA和角结构距离的方法在齿轮故障识别上的有效性。