摘要

针对传统K-均值聚类方法不能有效处理大规模数据聚类的问题,提出一种基于随机抽样的加速K-均值聚类(Kmeans Clustering Algorithm Based on Random Sampling,Kmeans_RS)方法,以提高传统K-均值聚类方法的效率。首先从大规模的聚类数据集中进行随机抽样,得到规模较小的工作集,在工作集上进行传统K-均值聚类,得到聚类中心和半径,并得到抽样结果;然后通过衡量剩下的聚类样本与已得到的抽样结果之间的关系,对剩余的样本进行归类。该方法通过随机抽样大大地减小了参与K-均值聚类的问题规模,从而有效提高了聚类效率,可解决大规模数据的聚类问题。实验结果表明,Km...

  • 单位
    晋中学院