摘要
新型能源的发展离不开风力发电。随着风电机组性能的不断优化,对叶片运维提出了更高要求。为了提升风电机组的叶片巡检效率,有必要探索自动化、智能化的风电机组叶片巡检技术。无人机巡检技术已在多个领域有所应用,基于挂载高清摄像头的无人机对风电机组叶片所拍摄的近距离图像,通过图像识别实现风电机组叶片缺陷检测。通过研究Yolov4算法在风电机组叶片无人机自动巡检系统中的应用,探索出了提升风电机组叶片缺陷检测精度的新路径。通过深度学习和计算机视觉技术,提高了风电机组叶片检测的实时性、高效性和准确性。通过实验证明,利用数据增强和改进目标检测Yolov4算法,可使风电机组叶片缺陷的检测平均精度(mAP)达83%。