摘要
针对农业复杂环境易发的物联网感知数据丢失异常问题,该文提出一种基于正则化惩罚的K最近邻数据重构方法(K nearest neighbor-regularization penalty,KNN-RP),采用岭回归方法对最近邻方法中的最小二乘因子进行正则化,并讨论了惩罚项的范数选取形式。通过对农业物联网感知数据的时空稳定性与相关性分析,确定了时间与空间约束矩阵的定义方式。采用温室数据样本对算法性能进行交叉验证,结果显示该文的KNN-RP性能在点丢失模型下优于KNN、反距离加权KNN算法以及DT算法,而在块丢失模型下优于KNN和反距离加权KNN算法,略低于DT算法,提高了农业物联网的感知数据质量。该研究可为基于物联网数据的农业生产决策提供参考。
-
单位北京农林科学院; 国家农业信息化工程技术研究中心; 北京农业信息技术研究中心