摘要
为利用已有标注的影像数据集实现对未标注遥感影像的语义分割,提出一种对抗域适应的方法。首先在生成对抗网络的基础上,利用基于香农熵的不确定图,进行域间的对抗学习,实现已标注的影像(源域)与未标注的影像(目标域)之间的迁移学习;其次为进一步提升模型的无监督学习能力,使用基于伪标签提纯的自学习策略。为验证所提方法的有效性,使用ISPRS提供的IRRG波段的Vaihingen数据集与RGB波段的Potsdam数据集进行实验。实验结果表明,与典型的域适应方法相比,该方法可以有效地提升网络的泛化能力,进而提高模型在目标域上的分割精度。
-
单位信息工程大学