摘要
为了减少机器人导航路径长度和优化时间,提出了基于蛙跳多种群粒子群算法的路径规划方法。建立了机器人工作环境的Maklink模型,首先使用MS算法搜索出若干最短路径,然后提出了蛙跳多种群粒子群算法进行路径二次优化。将蛙跳算法的深度搜索思想引入到粒子群算法中,提出了多种群粒子群算法的分群方法、更新策略和合作机制,进而给出了基于蛙跳多种群粒子群算法的机器人导航路径优化方法。经过仿真验证,蛙跳多种群粒子群算法具有最佳的优化效果,最短路径长度比MSCPSO算法减少了3.82%,比PSO算法减少了5.46%;另外,蛙跳多种群粒子群算法的运行时间比MSCPSO算法减少了25.53%,比PSO算法减少了18.79%。
-
单位武汉科技大学; 武昌首义学院