摘要

隐喻识别是自然语言处理各前沿领域中所面临的难题。为了解决名词性隐喻中忽视的潜在特征和语义的信息利用不足从而导致隐喻识别效果不高的问题,利用深度学习的优势,该文提出一种特征融合神经网络模型—CB,针对名词性隐喻进行识别。使用卷积神经网络模型—CNN挖掘名词性隐喻句中的潜在特征,预训练表征模型—BERT对词语之间的关系和词的位置信息进行向量化表征,以此有效地学习名词性隐喻句中的语义信息。在隐藏层特征维度上融合两者提取到的信息,最后通过线性分类器进行识别。由于模型本身具有局限性,名词性隐喻句中还蕴含少量抽象的特性,因此无法只依靠模型挖掘所有的特征信息,但针对大部分非抽象名词性隐喻句能够在不耗费人力资源的条件下有较好的识别效果。经过实验对比发现CB模型在准确率上达到0.904 7、召回率0.936 2、F1值0.926 2,其综合指标均高于现有的最优深度学习模型。