摘要
为解决利用Sentinel-2卫星影像进行地物信息提取时云层遮挡造成的信息误判问题,提出了一种基于深度学习的遥感影像云区高精度分割方法。该方法通过预处理的遥感样本数据构建出一种深度神经网络模型,自动提取高层次影像特征;再将影像特征输入分类器,实现遥感影像的像素级分类,从而分割出云覆盖矩阵;最后将云覆盖矩阵转化为云二值图,结合感兴趣区矢量准确获取指定区域云检测结果。选取典型区域进行测试,结果表明:该方法检测精度较高,速度较快,且无须辅助信息与人工干预,可用于Sentinel-2卫星影像不规则区域自动云检测。
- 单位