针对国内外研究中现有团雾预测方式中出现的不足,建立了基于遗传算法优化的神经网络预测模型,用以对高速公路团雾的发生进行预测。在利用遗传算法得到BP神经网络的初始权值和阈值基础上,通过神经网络对输入的历史团雾气象数据进行学习训练,建立团雾预测模型。经优化的神经网络模型避免了由于神经网络初始权值、阈值难以确定所造成的网络震荡问题,以及神经网络计算过程中易陷入局部解的问题。实验结果表明,优化后的团雾预测模型具有较高的预测精度,为高速公路团雾的预测提供了新的方法与思路。