摘要

芽眼精准检测是实现马铃薯种薯智能化切块的前提,但由于种薯芽眼区域所占面积小、可提取特征少以及种薯表面背景复杂等问题极易导致芽眼检测精度不高。为实现种薯芽眼精准检测,该研究提出一种基于改进YOLOv7的马铃薯种薯芽眼检测模型。首先在Backbone部分增加Contextual Transformer自注意力机制,通过赋予芽眼区域与背景区域不同权值大小,提升网络对芽眼的关注度并剔除冗余的背景信息;其次在Head部分利用InceptionNeXt模块替换原ELAN-H模块,减少因网络深度增加而造成芽眼高维特征信息的丢失,更好地进行多尺度融合提升芽眼的检测效果;最后更改边界框损失函数为NWD,降低损失值,加快网络模型的收敛速度。经试验,改进后的YOLOv7网络模型平均准确率均值达到95.40%,较原始模型提高4.2个百分点。与同类目标检测模型Faster-RCNN(ResNet50)、Faster-RCNN(VGG)、SSD、YOLOv3、YOLOv4、YOLOv5n、YOLOX相比,其检测精度分别高出34.09、26.32、27.25、22.88、35.92、17.23和15.70个百分点。在马铃薯种薯自动切块试验台上进行芽眼检测试验,对于表面光洁及表面附有泥土、破损的马铃薯种薯,改进后模型的漏检率分别为4%、11%,检测效果优于其他网络模型。研究结果可为后续马铃薯种薯智能化切块芽眼检测提供技术支持。