摘要

为了解决多来源医疗知识库融合过程中常见的知识冗余问题,基于综合多种注意力机制和图卷积神经网络的MuGNN模型对互联网医疗知识融合的效果进行了研究.以乳腺癌疾病为例,首先构建了基于不同医疗网站的疾病实体关系库,然后利用MuGNN模型完成了实体对齐,同时与JAPE模型和GCN-Align模型的实体对齐效果进行了对比,最后对基于不同医疗网站的疾病实体关系库进行知识融合并通过Neo4j图数据库对融合后的知识图谱进行可视化处理.结果表明,与JAPE模型和GCN-Align模型相比,MuGNN模型的实体对齐效果更好.利用综合多种注意力机制和图卷积神经网络的MuGNN模型对互联网医疗知识进行融合,有助于提升多来源互联网医疗知识的融合效果,有助于多源知识图谱的构建与补全,有助于提供更优质的知识服务.

全文