摘要

采集不同微水含量的变压器油的近红外光谱,利用集合经验模分解(EEMD)与连续投影算法(SPA),建立变压器油中微量水分的最小二乘支持向量机(LS-SVM)回归模型。结果表明,原始求导光谱经EEMD分解后得到8个本征模态函数(IMF),在去掉第一个IMF后重构数据比原始求导光谱数据直接建模具有较好的效果,而利用去掉第一个IMF后重构数据经SPA筛选出的4个特征光谱(只占全谱的0.78%)来建模则具有更好的预测效果,预测均方根误差为1.04776×10-3,预测相关系数为0.9840,说明EEMD与SPA联用具有比EEMD及SPA单独运用更好的效果,且最优模型应用于实际油品的检测同样具有很好的效果...

全文