摘要

针对多传感器观测数据质量不同且未知时,多传感器量测迭代更新高斯混合概率假设密度(GM-PHD)滤波器跟踪算法的结果对更新顺序敏感的问题,该文提出一种多传感器自适应量测迭代更新GM-PHD跟踪算法AIUGM-PHD。首先基于多传感器融合一致性度量,提出一种用于在线评估各传感器跟踪结果质量的方法;然后对多传感器迭代融合顺序进行优化,最后构建相应的多传感器GM-PHD融合跟踪算法。为了解决多传感器自适应顺序迭代融合无法体现传感器质量差距的问题,提出了一种自适应带权伪量测迭代更新GM-PHD跟踪算法PAIU-GMPHD。仿真结果表明,与常规多传感器迭代更新GM-PHD跟踪算法相比,所提算法能够获得鲁棒性更好、精度更高的跟踪结果。