一种基于区间核的聚类算法

作者:耿德志
来源:山西大学学报(自然科学版), 2016, 39(03): 429-433.
DOI:10.13451/j.cnki.shanxi.univ(nat.sci.).2016.03.019

摘要

针对传统聚类算法无法解决区间型数据聚类的问题,文章提出一种基于区间核的聚类算法(Clustering method based on interval kernel,IK-clustering,IK-C)。该方法首先求解区间型数据的区间中值和区间宽度,结合区间宽度和区间中值构造区间核,并采用平衡因子调节二者所占的比重,以有效衡量两个区间型样本的相似性,从而构造区间数据聚类算法。实验结果表明,文章提出的基于区间核的聚类算法在聚类均方差测度上比传统其他区间型数据聚类算法减小了0.019-0.132,说明本文提出的方法能够对区间型数据进行更为有效的聚类,得到了较好的聚类结果。

  • 单位
    晋中学院

全文