摘要
刚开采的金属矿石存在大量泥块混合物,需要进行重复的洗矿操作,耗费大量水资源和机器资源,对于粘结性强的泥块还需要后期人工分拣。传统方法一般是通过改造洗矿工艺来减少含泥量,但是改造成本高,不能有效应对较大的泥块,为此提出一个基于深度学习的矿石粗分拣的系统。通过普通RGB摄像头实时采集矿泥混合物图像,并无线传输到服务器端;引入SSD512目标检测框架作为系统核心算法,对矿石和泥块进行识别,并返回目标分类置信度和位置信息的回归;由识别结果控制分拣装置分拣出泥块。实验验证结果发现识别的平均精确率达到91%,识别的速度达到了0.05 s每幅图片。
- 单位