基于参考点选择策略的改进型NSGA-III算法

作者:耿焕同*; 戴中斌; 王天雷; 许可
来源:模式识别与人工智能, 2020, 33(03): 191-201.
DOI:10.16451/j.cnki.issn1003-6059.202003001

摘要

针对多目标进化算法忽视种群在决策空间的分布信息,未考虑待优化问题Pareto前沿形状的问题,文中提出基于参考点选择策略的改进型NSGA-III算法.首先,根据种群在决策空间的分布特征,借助信息论中的熵思想,计算相邻两代种群的熵差,判定种群的进化阶段.然后,根据种群在目标空间的分布特征,借助参考点关联个体数目的统计信息,评估参考点的重要性.最后,在种群进化的中后期,依据参考点的重要性特征剔除冗余的无效参考点,使保留的参考点适应种群规模与Pareto前沿面,利用筛选后的参考点引导种群进化方向,加快算法收敛及优化效率.在测试函数集上的对比实验表明,文中算法在收敛性和分布性上均较优.