摘要
针对现有图神经网络在捕获知识图谱信息并进一步用于推荐时,侧重于项目端建模所存在的问题,提出一种基于双端知识图的图注意推荐模型。该模型通过从用户端和项目端在知识图谱上挖掘相关属性来有效增强推荐。从用户端角度,通过知识图谱中实体之间的联系传播用户兴趣,沿着知识图谱中用户的历史点击项来扩展用户的潜在兴趣;从项目端角度,通过捕获知识图谱中的高阶结构和语义信息,对每个实体的邻居抽样作为接收场,通过图注意获得实体-实体交互信息,以此建模高阶邻域信息,最后使用交叉熵损失函数进行训练。结果表明,所提模型在关于电影、书籍和音乐推荐的三个数据集上,有效提高了推荐的准确性和可解释性。
- 单位