传统的随机森林在网络入侵检测中收敛速度慢,并且学习性能不够完善。为消除原始入侵检测数据中的冗余信息,提出一种基于信息增益和粗糙集的随机森林入侵检测方法。使用信息增益对数据的各个属性进行相关分析,删除冗余属性,减小属性简约的时间复杂度;利用粗糙集理论从数据中提取分明函数,求得属性简约;使用随机森林分类器进行分类。实验结果表明,该方法收敛速度较快,在召回率和精度方面都要高于传统的随机森林方法,尤其是在训练样本充足的网络环境下,效果更加明显。