优选策略的自适应蚁狮优化算法

作者:刘景森; 霍宇; 李煜*
来源:模式识别与人工智能, 2020, 33(02): 121-132.
DOI:10.16451/j.cnki.issn1003-6059.202002004

摘要

针对基本蚁狮优化算法收敛速度较慢、易陷入局部极值、高维求解精度较低等缺点,提出具有自适应边界、优选轮盘赌和动态比例系数的改进蚁狮算法.在蚂蚁围绕蚁狮游走的过程中引入自适应边界机制,增加蚂蚁种群活跃性,防止算法陷入局部极值.轮盘赌选择蚁狮过程中加入优选轮盘赌策略,在保持蚁狮个体多样性的同时加快算法收敛速度.在蚂蚁位置更新公式中加入动态比例系数,提高算法前期的探索能力和后期的开发能力.理论分析证明文中算法的时间复杂度与基本算法相同.针对16个不同特征标准测试函数,在多个维度上的优化仿真实验测试结果表明,文中算法具有较好的可行性,寻优精度和收敛速度均有明显提升,受维度变化影响很小,高维求解能力更强、更稳定.