摘要
在SAR图像分割中,尤其是车辆目标的SAR图像分割中,一般需要得到目标和阴影两个区域的分割结果。文中为了解决车辆目标的SAR图像多区域分割,提出了一种分层多区域CV模型,该模型结合了一种新的惩罚项,并且同时使用水平集函数的阶跃初始化,使模型具有了良好的水平集演化的属性。同时,模型对噪声的敏感性下降,使模型适用于未预处理的SAR图像。最后,对比Chan-Vese多区域分割模型,将分层多区域CV模型应用于未预处理的SAR图像,实验结果验证了模型的有效性。
-
单位东南大学; 毫米波国家重点实验室